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ABSTRACT

Human activities have severely disrupted the Lake Erie ecosystem. Recent changes
in the structure of the lower trophic level associated with exotic species invasions
and reduced nutrient loading have created ecological uncertainties for fisheries
management. Decisions that naïvely assume certainty may be different and subop-
timal compared to choices that consider uncertainty. Here we illustrate how
multiobjective Bayesian decision analysis can recognize the multiple goals of man-
agement in evaluations of the effect of ecological uncertainties on management and
the value of information from ecological research. Value judgments and subjective
probabilities required by the decision analysis were provided by six Lake Erie fishery
agency biologists. The Lake Erie Ecological Model was used to project the impacts
of each combination of management actions and lower trophic level parameter
values. The analysis shows that explicitly considering lower trophic level uncertain-
ties can alter decisions concerning Lake Erie fishery harvests. Of the research
projects considered, investigation of goby predation of zebra mussels (Dreissena sp.)
and lakewide estimation of secondary production appear to have the greatest
expected value for fisheries management. We also find that changes in the weights
assigned to management goals affects decisions and value of information more than
do changes in probability judgments.
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INTRODUCTION

Natural resource management is subject to inherent uncertainty because of
natural variability and incomplete understanding of ecosystem structure and func-
tion. Explicit consideration of uncertainty in management can result in more
prudent decisions and better-expected performance than if uncertainty is disre-
garded (Reckhow 1994a; Ellison 1996; Peterman and Anderson 1999). Further,
rigorous assessment of the value of decreasing uncertainty through research re-
quires explicit consideration of the likelihood of alternative possible outcomes of
research and the effects of that information on decisions. However, because ecosys-
tems produce a range of services that are valued in diverse ways by societal groups,
“value” is necessarily a multidimensional notion. Decision analysis is a tool for
considering both uncertainty and the multiple dimensions of value; it can contrib-
ute to better decisions by helping managers to structure the problem, balance risks,
and compare options based on outcomes and expressed preferences (Keeney and
Raiffa 1976; Clemen 1995).

Cultural stresses over the past 175 years have resulted in substantial uncertainty
concerning the future of the Lake Erie ecosystem (Hobbs et al. 2000). By the 1950s,
agricultural fertilizers, untreated human waste, and industrial byproducts were
major stresses. In addition, by the late 1960s, overfishing caused the extinction of
the blue pike and dramatic declines in the populations of other native Lake Erie
species such as walleye, whitefish, herring, and sturgeon (Koonce et al. 1996).
Meanwhile, the 1970 discovery of mercury in walleye tissue prompted a temporary
moratorium on walleye fishing. Subsequently, the US and Canada cooperated to
implement quota management for the Great Lakes fisheries. This action, together
with pollution abatement, caused the walleye population to recover from its severely
depressed status in the 1960s (Hatch et al. 1987). Yet, the highly successful recovery
of fisheries in the 1980s did not continue into the 1990s.

The reasons for the decline of Lake Erie’s fisheries in the 1990s are unclear. As
noted by Locci and Koonce (1999), three general explanations have been proposed:
(1) declining productivity of the lake resulting from reductions of phosphorus
inputs; (2) declining primary productivity associated with the effects of zebra mus-
sels on nutrient cycling and phytoplankton density, which may have lowered the
availability of food for fish and thus caused a decline in fish production; and (3) a
predator-prey imbalance in the 1980s, which may have caused predator-prey oscil-
lations and declines in fish abundance during the 1990s.

An important source of this uncertainty is ignorance concerning how zebra
mussels impact energy and nutrient flows in the lower trophic level of the Lake Erie
ecosystem (encompassing phytoplankton, zooplankton, and zoobenthos). Ecolo-
gists have proposed several distinct hypotheses concerning these impacts, and their
implications for fisheries. Such scientific debate adds to the already considerable
uncertainty faced by fishery managers resulting from, e.g., error-laden estimates of
population sizes and weather-dependent recruitment rates (CGLRM 2000). Despite
these uncertainties, US and Canadian fishery agencies must make decisions annu-
ally about, for example, maximum takes, season length, and allowable equipment.

Explicit risk analyses have not been used to identify robust fish harvest policies
for Lake Erie. Although there are several studies (e.g., CGLRM 2000) that charac-
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terize the uncertain state of present knowledge (including the zebra mussels’
influence on the lower trophic level), none have (1) quantified the uncertainty
implied by the existence of different hypotheses about the zebra mussel’s impact,
(2) systematically compared management alternatives while recognizing that uncer-
tainty, or (3) estimated the value to management of additional research that could
decrease uncertainty.

The object of this paper is to use multicriteria Bayesian analysis to quantify
uncertainties about the Lake Erie ecosystem and show how they can be consid-
ered in fisheries management and ecological research planning. Two
concerns conflicting goals and scientific uncertainty—play key roles in our
analysis. The ubiquity of competing interests and uncertainty in ecological
management is well recognized (e.g., Ludwig et al. 1993). Systematic consider-
ation of tradeoffs using multicriteria analysis can help make decisions more
defensible and consistent (McDaniels 1995). In addition, Bayesian analysis can
express uncertainty in quantitative terms and incorporate new knowledge gained
from monitoring and research (Sainsbury 1991; Ellison 1996).

Goal conflicts in ecological management have been analyzed before using various
multicriteria decision analysis methods. These methods differ in how they elicit and
structure people’s preference judgments, and how those judgments are used to rank
alternatives (Clemen 1995; Hobbs and Meier 2000). Such methods can make
decisions involving complex tradeoffs more comprehensive, transparent, and con-
sistent. As examples of applications, multiattribute value and utility methods have
been used to compare options for fisheries management and eutrophication miti-
gation (Reckhow 1994b; McDaniels 1995; Anderson et al. 2001), water conservation
(Kindler 1998), natural reserve selection (Rothley 1999), and water quality improve-
ment (Ridgley and Rijsberman 1992). The methods of ELECTRE and goal program-
ming have been applied to reservoir operation (Harboe 1992), water allocation
(Bella et al. 1996), and fisheries management (Mardle et al. 2000).

There is also a significant literature on the use of experiments and Bayesian
analysis to update knowledge about environmental systems and to evaluate informa-
tion gathering activities (e.g., Reckhow 1990; Sainsbury 1991; McAllister and Peter-
man 1992; Ellison 1996; Wolfson et al. 1996; Hobbs 1997; Dakins 1999). The basic
theory underlying Bayesian value of information analysis was proposed by Lindley
(1956). The advantage of Bayesian analysis is that the approach is a practical and
theoretically attractive way for updating beliefs about uncertainties in light of
information from empirical observation, modeling, or expert judgment. This theory
has been applied to environmental decision problems such as contaminated site
remediation (Dakins et al. 1996), monitoring for water quality management (Varis
and Kuikka 1999), greenhouse gas mitigation (Manne and Richels 1991), Lake Erie
water level management (Venkatesh and Hobbs 1999), and wetlands management
under climate change uncertainty (Bloczynski et al. 2000). As an example, Walters
and Green (1997) used this approach to quantify the value of information for fish
stocking. They considered experiments involving varying stocking rates among
different lakes in order to obtain better estimates of how growth or survival decrease
with increasing stocking density. Such iterative Bayesian updating processes are one
approach for implementing the adaptive management paradigm (Walters and
Hilborn 1976; Walters 1986).
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However, unlike the analysis in this paper, previous studies of the value of
ecological information in the literature have generally been based on a single
decision criterion, not fully reflecting the multiple conflicting goals of management.
Further, we consider a wide range of research projects directed at several param-
eters of an ecological model, while most previous Bayesian analyses in ecology have
emphasized a single critical parameter of a population model. Our application
shows how value and probability judgments from a group of managers can be
integrated into a risk assessment of fisheries management and ecological research,
and how decisions can be sensitive to those judgments. We also quantify the value
of explicitly considering uncertainty.

The plan of the paper is as follows. In the methods section, we present the
elements of our decision analysis approach, including probability models, the
multicriteria utility model, an ecological model, and fish harvest management and
ecological research options. Procedures for eliciting necessary value and probability
judgments from fishery managers who participated in two workshops are summa-
rized. The methods section also describes how the resulting decision tree is solved
in order to calculate optimal management and research strategies, the expected cost
of ignoring uncertainty (ECIU), and the value of perfect and imperfect information
(EVPI, EVII). The results section summarizes the results of the application, includ-
ing sensitivity analyses.

METHODS

In the first methodology subsection below, we provide an overview of the struc-
ture and products of our decision analysis. In the subsequent subsections, we
explain several methodological components including Bayes’ Law, multicriteria
decision analysis, and decision trees. We then describe how we obtain optimal
strategies, ECIU, EVII, and EVPI. Details are provided on the fishery alternatives,
the Lake Erie Ecological Model, lower trophic level hypotheses and their prior
probabilities, the research options and likelihoods of research outcomes, and finally
the performance criteria and weightings used to evaluate the options.

Structure and Products of the Decision Analysis

The first task of a decision analysis is to describe the choices to be made, when
they are made, what information is available, and what decision criteria are to be
applied. We structure the Lake Erie fishery management problem as having two
decision stages. At the first stage, we decide whether a research project should be
undertaken and, if so, which one. The chosen project(s) should represent the best
balance of research cost and the value of reduced uncertainty. We denote the
possible research projects as e1, e2, … and the decision of no research as e0; thus,
E ≡ { eh, h = 0,1,.,H } is the set of available projects. Then, at the second decision stage,
we choose a fishery management policy as from the available options A ≡ { as, s =
0,1,.,S }, based in part on the knowledge obtained from the research. As a first
approximation, we assume that the policy is to be implemented for a time horizon
of 50 years. Thus, we do not consider adaptive policies that are adjusted depending
on estimated populations and other information; however, the proposed framework
could accommodate a more sophisticated analysis of that type. In reality, the Lake
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Erie Committee of the Great Lakes Fishery Commission does adjust harvest regula-
tions from year to year, based on informal analyses of changing knowledge and
priorities. However, rule-based exploitation policies (e.g., Koonce and Shuter 1987)
that vary exploitation adaptively have not been implemented, and methods to
estimate fixed exploitation rates remain the accepted practice.

We represent model uncertainty by probability distributions over a set of param-
eters ∆ = {δn, n=1,2,…, N} of the lower trophic module of the Lake Erie Ecological
Model (LEEM, described below). Distinct values of the parameters can represent
alternative hypotheses about the effects of zebra mussels on lower trophic level
nutrient and energy flows. We use discrete probability distributions for the param-
eters, denoting the possible values of δn by δn1, … δnm,.., δnM(n) , where M(n) is the
number of possible values of δn. In order to simplify the assessment of probabilities,
we assume that the distributions are independent. Bayesian analysis, which we
describe later, requires assessments of both prior distributions for these parameters,
as well as likelihood probabilities that describe the distribution of research out-
comes conditioned on the values of the parameters. These distributions were
provided as direct judgments by the fishery managers participating in our study.

The valued services and attributes of the Lake Erie ecosystem that will be used as
decision criteria are a vector X(as, ∆). This vector is calculated by LEEM for each
combination of values of the management decision as and lower trophic level
parameters ∆. Multicriteria utility functions that translate these criteria into a scalar
measure of performance U(X(as, ∆)) were elicited from the fishery managers using
procedures described later in this article. Optimal fishery management and re-
search decisions for each utility function can be derived by maximizing its expected
value over the possible values of the uncertain parameters.

A decision analysis such as the one in this paper can yield several potentially
useful products. In this application, we calculate the following:

1. Optimal strategies; given the uncertainties ∆ and the information that results
from research, we can identify which research and management options
maximize the expected utility of X.

2. The performance penalty resulted from disregarding uncertainty (ECIU),
equaling the difference in the expected performance of a naïve strategy
developed assuming certainty, and a more sophisticated strategy that consid-
ers uncertainty (Morgan and Henrion 1990).

3. The value of information: the expected improvement in performance associ-
ated with decreased uncertainty through new research (Lindley 1956; Ben-
jamin and Cornell 1970; Morgan and Henrion 1990). This includes two
quantitative indices: the first is the value of imperfect information (EVII),
equal to the difference between the expected pay-off of (1) the optimal
decision given improved information from research about ∆ and (2) the
optimal decision without further information. The second index is the worth
of perfect information (EVPI), the difference between the expected perfor-
mance of (1) the optimal decision given perfect knowledge of ∆ (or some of
its components) and (2) (again) the optimal decision without more informa-
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tion. EVPI is an easily calculated upper bound to EVII, and can be used to
bound the benefits of research.

Bayes’ Law: Reducing Uncertainties in ∆
Bayes’ Law is the keystone of Bayesian decision analysis. Bayes’ Law allows us to

use information, such as research outcomes, to update beliefs about scientific
uncertainties (expressed here as parameter distributions). Let the outcome of a
research project eh be designated Zh, with possible realizations {Zhk, k = 1,2,.., K(h)}.
Bayes’ Law uses outcomes to update prior probabilities P(δnm) of the parameters,
yielding posterior probabilities P(δnm |Zhk):

P(δnm |Zhk) =P(Zhk | δnm )P(δnm) / Σp P(Zhk | δnp)P(δnp) = P(Zhk | δnm )P(δnm) / P(Zhk)

(1)

where P(Zhk | δnm ) is the likelihood of outcome k given that δnm is the true state of
parameter δn, and P(Zhk) is the unconditional probability of outcome Zhk. Eq. 1 can
be generalized to the case where Zh and ∆ are vector quantities.

The value of a research project is assessed by comparing the expected perfor-
mance of management developed using the posterior probabilities P(δnm | Zhk) to the
expected performance of the optimal strategy based just on the prior probabilities
P(δn). Of course, research involves costs and the decision analysis must weigh
improved performance against this expense.

Multicriteria Utility Functions U(X(as, ∆))

The selection of decision criteria X = {xi,, …i = 1,..,I} is an important step in
multicriteria decision analysis (Barton and Sergeant 1998). According to
multicriteria decision theory, the set of criteria should be both comprehensive
and measurable while avoiding conceptual overlap (Keeney and Raiffa 1976).
(We discuss the criteria selection process in more detail later.) The values of
these criteria are calculated by an ecological model and depend on the alterna-
tive chosen and the assumed parameter values: X(as, ∆)= {x1(as, ∆), …, xI(as, ∆)}.
There are many methods for translating multiple criteria into a single index of
desirability (Hobbs and Meier 2000). We choose to apply Multiattribute Utility
Theory (MAUT) (Keeney and Raiffa 1976; Clemen 1995). MAUT’s advantages
include a large number of documented applications along with a normatively
appealing set of axioms concerning how people evaluate alternatives under
risk.

Multicriteria utility functions can be constructed as follows. First, a single crite-
rion utility function ui(xi) is assessed separately for each criterion xi. These functions
represent relative preferences concerning different values of xi and have a range of
0 to 1, representing the worst and best values, respectively. These functions also
capture the user’s attitudes toward risk; for instance, whether alternatives with
smaller variances are preferred (risk aversion). Several techniques, such as the
certainty equivalent procedure, can be used to elicit single criterion utility functions
from managers (Keeney and Raiffa 1976; Clemen 1995).
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The second step involved in creating utility functions is to aggregate the criteria,
permitting overall comparison of the alternatives as. A simple aggregation is the
additive utility function:

U(X(as, ∆))= Σi wi ui(xi (as, ∆)).  (2)

where wi represents the weight for criterion i (Σi wi =1), and U(X(as, ∆)) is the overall
utility of alternative as, given state of nature ∆. The major assumption underlying the
additive form is additive independence, which applies if preferences between two
distinct alternatives X1 and X2 depend only on the marginal probability distributions
of the xi within an alternative, and not their joint distribution (Keeney and Raiffa
1976). Several techniques to assess weights are available, e.g., the Analytic Hierarchy
Process and the gamble, swing, and trade-off methods (Watson and Buede 1987).
The trade-off method is often favored because it derives weights from observed
choices among alternatives, as opposed to asking directly for numerical weights
whose meaning may be ambiguous. For this reason, we asked the fishery managers
participating in our study to use the trade-off approach; details of the procedure are
given by Anderson et al. (2001).

Each participant went through the above steps, creating their own utility func-
tion, which we use to choose the option that maximizes his or her expected utility
E∆[U(X(as, ∆))] = Σ∆P(∆)U(X(as, ∆)). However, the numerical difference in ex-
pected utility between two alternatives (say, a1 and a2) is not directly interpretable,
since utility functions are, strictly speaking, only ordinal scales. Fortunately, a
difference in expected utility can be converted to an equivalent difference in one
of the criteria xi by the following procedure. Let a1 be preferred to a2 (i.e.,
E∆[U(X(a1,∆))] > E∆[U(X(a2,∆))]). Let X(i*) be defined as a vector of length I
consisting entirely of zeroes except for the ith element whose value is xi*. The value
of this element is calculated by solving the following equation for X(i*):

E∆[U(X(a1,∆))] = E∆[U(X(a2,∆)+ X(i*))] (3)

This xi* can then be interpreted as the amount that a2 would have to improve in
criterion i in order to make a2 as attractive as a1. Here we use annual walleye sport
harvest (x2) to gauge the difference between alternatives. By this measure we might
calculate that a given alternative is preferred to another option by an amount
equivalent to an increased catch of, say, 10 tons of walleye/year. A similar procedure
is used below to express value of information and cost of ignoring uncertainty in
terms of an easily interpreted attribute. Note that this procedure generalizes the
more common decision analysis technique of expressing all values in dollar terms.

Decision Tree Analysis to Define Optimal Strategies

Trees are used in decision analysis to graphically portray the structure of the
decision problem. They are also used to solve for the optimal decision strategy using
the method of “folding back” (also called backwards dynamic programming). Fig-
ure 1 is a schematic of the decision tree for the Lake Erie research project evaluation
problem. The tree flows from left to right through time.
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A decision tree has three basic elements.

1. Decision nodes (squares) represent decision points. Each alternative (here, an
element of E or A) is represented by a separate arc connected to the right side
of a decision node. In the case of Figure 1, two decision stages are shown,
representing (1) what research projects eh∈ E can be undertaken and then (2)
what fisheries management actions as∈ A can be implemented. A full tree
shows a separate branch for each alternative; we use the schematic for simplic-
ity.

2. Chance nodes (circles) represent random events, with an arc for each possible
realization (an element of either Z or ∆). Probabilities are attached to each
arc, and the sum of those probabilities for a given node must be one. Here we
have two types of chance nodes: one for model parameters ∆ and the other for
outcomes of research Z. Note that the chance node for ∆ that follows imple-
mentation of a research project shows posterior probabilities P(∆|Zh) from
Bayes’ Law (Eq. 1), conditioned on the research project outcome Zh.

Figure 1. Decision tree for fisheries management with research options.
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3. Outcomes X and their utility U(X).

The optimal management action as results from maximizing E∆[U(X(as,∆))],
given available information in the form of the distribution of ∆. The most effective
research project is that which yields the highest value of EZh

[E∆[U(X(aopt|Zh
, ∆))|Zh].

This is the expected performance of the optimal strategies under the different
research outcomes Zh, weighted by the probability of each outcome P(Zh) = Σ∆
P(Zh|∆)P(∆). aopt|Zh

 is the optimal management decision, given outcome Zh.
The optimal strategy and its expected performance are obtained by folding back

the decision tree. The procedure starts from the branches farthest to the right and
moves leftward (backward in time). At each node encountered, one of the following
operations is performed: either calculate the expected performance (chance node),
or determine the alternative with the highest expected performance, noting its
expected utility (decision node). This procedure continues until the calculation is
completed for the leftmost node of the network; the optimal research and manage-
ment strategy has then been found, defined as the optimal choice for each of the
decision nodes.

Cost of Ignoring Uncertainty and Value of Information

We have just introduced one product of a decision analysis: the optimal decision
strategy. Other products include the quantification of the expected penalty, if any,
if uncertainty is disregarded (ECIU) and the value of information (EVII and EVPI).
The procedures used to calculate each of these three concepts is defined below.

ECIU: The expected cost of ignoring uncertainty compares the expected perfor-
mance of two strategies: (1) a naïve strategy developed assuming that a nominal
value for ∆ will accrue with probability 1; and (2) an optimal strategy developed
considering the full range of possibilities and their probabilities. This represents the
expected loss of performance when a decision is made as if there is no risk. The
procedure for calculating ECIU is as follows (Morgan and Henrion 1990):

1. Define a nominal (deterministic) value of ∆, calling it ∆naïve. This may be some
“base case” value of ∆, or, alternatively, its expected value.

2. Define the optimal strategy, anaïve under the base case assuming that probabili-
ties of every realization ∆ are zero except ∆naïve:

anaïve = arg MAXas 
U(X (as,∆naïve))  (4)

where “arg MAXa f (a)” denotes the alternative a that leads to the maximum value
of f(a).

3. Calculate the expected utility for the naïve strategy defined in Step 2, consid-
ering the full probability distribution of ∆:

E∆[U(X(anaïve ,∆))] = Σ∆ P(∆) U(X(anaïve, ∆ ))  (5)

4. Define the optimal strategy, aopt, and calculate its expected utility.
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aopt = arg MAXas
 Σ∆ P(∆) U(X(as, ∆ )) (6)

E∆ [U(X(aopt, ∆))] = Σ∆ P(∆) U(X(aopt, ∆ ))  (7)

5. ECIU is defined as the improvement in the expected utility if aopt is chosen
instead of anaïve. As noted earlier, a difference in utility between alternatives can
be quantified in terms of any particular attribute by Eq. 3. In this case, the
equation becomes:

E∆[U(X(aopt,∆))] = E∆[U(X(anaïve,∆)+X(i*))],  (8)

in which case ECIU equals the nonzero element of X(i*).
EVII: The expected value of imperfect information is calculated by considering

whether research outcomes could affect decisions (Benjamin and Cornell 1970).
The calculation recognizes that the information obtained is imperfect (in our case,
that the research does not result in error-free parameter estimates). The steps of the
method are now described.

Under a given research outcome Zh, the best choice at the second decision stage
(Figure 1) is:

aopt|Zh = arg MAX as
 E∆ [U(X(as, ∆))|Zh] = arg MAX as

[Σ∆ P(∆|Zh)U(X(as,∆))].

(9)

The expected utility for that optimal decision at the second decision stage is then

E∆[U(X(aopt|Zh ,∆))| Zh] = Σ∆ P(∆|Zh)U(X(aopt|Zh
,∆)).  (10)

Now we can obtain the expected utility of project eh given all possible project
outcomes:

E(U(eh))=EZh
[E∆ [U(X(aopt|Zh

,∆))| Zh]] = ΣZh
P(Zh) [Σ∆ P(∆ |Zh)U(X(aopt|Zh

, ∆))].

(11)

Meanwhile, for no research project e0, the optimal management decision and the
expected utility for the optimal decision at the second stage are aopt (Eq. 6) and
E∆[U(X(aopt, ∆))] (Eq. 7), respectively. The value of information for a project eh can
now be defined as the improvement in the expected utility compared to aopt. Using
Eq. 3 to quantify this improvement in terms of some criterion xi means solving the
following equation for X(i*):

EZh
[E ∆ [U(X(aopt|Zh , ∆))| Zh]] = E∆[U(X(aopt,∆)+X(i*))].  (12)

200642.pgs 6/18/03, 10:48 AM1032



Hum. Ecol. Risk Assess. Vol. 9, No. 4, 2003 1033

Multicriteria Bayesian Analysis of Lake Management

Similar to the ECIU calculation, EVII will be the nonzero element of X(i*). (Note that
the EVII calculation assumes that U(X(aopt|Zh , ∆)) excludes the cost of the research
project itself. This is because EVII refers only to the value of the information, not
the expense of obtaining it. Thus, to determine if a project might be worthwhile,
one could compare its cost to its EVII in a manner we explain later.) A key
theoretical result is that if the research has no chance of changing the decision (i.e.,
aopt| Zh = aopt for all Zh), then EVII=0.

EVPI: The expected value of perfect information is obtained by assuming that
new information Z permits the user to estimate ∆ without error. As a result, the
development in Eqs. 9 to 12 can be simplified as follows. First, define aopt|∆ as the
optimal strategy given parameter values ∆. Then the expected utility if perfect
information was available would be E∆[U(X(aopt|∆,∆))]. Comparing this to the ex-
pected utility if no information is available E∆[U(X(aopt,∆))] (Eq. 7)) allows us to
gauge the value of perfect information. Again using Eq. 3 to quantify this improve-
ment in terms of an attribute xi, we solve the following equation for X(i*):

E∆[U(X(aopt|∆ , ∆))] = E∆[U(X(aopt,∆)+X(i*))].  (13)

As in the case of ECIU and EVII, EVPI will be the nonzero element of X(i*).
EVPI is an upper bound to the EVII from any real research activities. This upper

bound is useful because if EVPI falls short of the cost of a research project, the
project cannot be justified by the value of the information it provides. Thus, we can
use EVPI to screen research projects— if their cost exceeds their maximum possible
benefit, then we do not consider them further.

Table 1 summarizes the relationships between ECIU, EVII, and EVPI based on
decisions under different information states. The current information state repre-
sents the belief without additional information (i.e., prior probability). New but
imperfect information can be obtained through research. Perfect information re-
sults in the highest possible expected utility (far right), while on the other extreme,
ignoring information gives the lowest expected utility.

Lake Erie Ecosystem Decision Alternatives: A

Ten fishery biologists from US and Canadian resource management agencies
participated in two workshops held in Cleveland, OH, in early 2000. The purpose
of the workshops was to ask the participants to identify fishery management objec-
tives, alternatives, and uncertainties; to define research projects that could address
those uncertainties; and to quantify utility functions and probabilities needed by the
decision analysis. In this paper, we report results only for the six managers who were
able to attend the entirety of both workshops. These six managers represented
agencies from both Canada and several states in the US.

As one of the tasks in the first workshop, the managers identified several classes
of fishery management options, including regulations on fishing gear type and
commercial and sporting harvest efforts; harvest quotas; stocking; protecting and
rehabilitating habitat; and regulating phosphorus discharges. Because regulations
and quotas are a responsibility of agencies represented at the workshop, our analysis
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focuses on those decisions; however, stocking, nutrient, and habitat policies could
be considered in a more general study.

In particular, we consider the management of commercial trawling (which tar-
gets smelt, Osmerus mordax), commercial gill netting (for yellow perch, Perca flavescens),
and sport harvest (predominantly of walleye, Stizostedion vitreum). Management by
regulation and quota is modeled as a set of targets for fishing mortality levels, one
target for each of the three species. We also assumed that catchability in each of
these fisheries varies by age and thus we vary the target mortality by age as well. For
simplicity, three levels of each of the targets are considered for each species (high
(H), medium (M), and low (L)), or 27 combinations in all; more combinations
could be considered at the expense of additional computation time. In 2000, Lake
Erie yellow perch target mortality varied by management district averaging 0.4 (yr–1).
Walleye target mortality was 0.33 (yr–1). Unlike yellow perch and walleye, Lake Erie
fish management agencies do not use a virtual population estimate to derive smelt
quotas, and we do not have a target mortality for direct comparison. However,
LEEM estimates of target mortalities are broadly consistent with smelt harvests. It is
important to note that in addition to impacts on target populations, these decisions
can directly impact other species due to by-catch, and indirectly through ecosystem
effects (e.g., predation and competitive interactions) (Locci and Koonce 1998).
Also, fish management agencies do not use these targets on a strict basis. Quotas
derived from these targets are often adjusted qualitatively in response to uncer-
tainty. Hatch et al. (1987) review the quota derivation process in more detail.

Ecological Model X(as, ∆)

We use the Lake Erie Ecological Model (LEEM) to estimate how decisions affect
the managers’ criteria. LEEM was designed to aid the understanding of ongoing

Table 1. Summary of relationships between ECIU, EVII, and EVPI.
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changes and interactions between zebra mussels, fisheries productivity, phosphorus
loading, and fisheries management in the Lake Erie system (Koonce and Locci
1995; Locci and Koonce 1999). Using an annual time step, LEEM models age
groups of 17 species and dynamically describes prey-predator relationships and the
lower trophic level. The model allows users to explore alternative decisions in such
areas as phosphorus loading and fisheries management considering the implica-
tions of assumptions concerning the parameters and structure of the system.

In theory, it would be desirable to capture uncertainties concerning model
structure by considering more than one system model (e.g., as in Ellis 1988).
Limiting ourselves to one model may result in a significant understatement of the
true uncertainty. However, LEEM is the only available integrated lower trophic level-
fisheries model for Lake Erie, and so we attempt to represent structural uncertain-
ties through changes in LEEM parameters. The Appendix lists the equations within
LEEM that simulate Lake Erie’s lower trophic level. We refer to these equations and
their variables in the later discussion of the lower trophic level hypotheses.

Various views among ecologists concerning the role and impact of zebra mussels
on phosphorus and energy cycling constitute the scientific uncertainty ∆; our
decision analysis assesses the implications of that controversy for fishery harvest
management. In order to limit the complexity of the probability assessments, we
included only five of the LEEM parameters in ∆. These parameters were chosen
because they represent the key responses of lower trophic variables to phosphorus
and energy inputs. We model this disagreement by allowing the use of different
prior probability distributions for LEEM parameters; in particular, we asked each
workshop participant to specify their own prior distributions for five LEEM param-
eters that govern lower trophic level nutrient flows and production efficiencies: ZMr,
Zkp, AZP, AZB, and g0. Thus, these parameters are the components of ∆ whose
uncertainty reflects the existence of alternative hypotheses concerning the effect of
zebra mussels upon Lake Erie’s lower trophic levels. These hypotheses are summa-
rized next.

Alternative Lower Trophic Level Hypotheses for Lake Erie

A wide variety of uncertainties challenge Lake Erie fish managers. Here we focus
on a representative set of three mechanisms, considering alternative hypotheses
about the effect of zebra mussel invasion on lower trophic level productivity of the
Lake Erie ecosystem.

The first mechanism involves the interaction of phosphorus recycling and phy-
toplankton productivity. Griffith (1999) argues that the net effect of the zebra
mussel invasion is an increase in macrophyte production and decrease in phospho-
rus recycling that combine to lower phytoplankton productivity. In contrast, Culver
et al. (2000) hypothesize that zebra mussels have increased mineralization of phy-
toplankton settling into benthic regions and have thus enhanced phosphorus recy-
cling rates; this increased availability of phosphorus for primary production is seen
as compensating for the direct effect of increased mussel consumption of algae. The
second mechanism concerns the effects of competition between zebra mussels and
zooplankton for edible algae. Culver et al. (2000) argue that the decline of phy-
toplankton biomass associated with declining nutrient loads since the 1970s and the
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zebra mussel invasion have not resulted in a major decline of zooplankton produc-
tion. In contrast, Heath et al. (2000) note that the observed phytoplankton-zoop-
lankton constancy does not extend to the microbial food web, where zebra mussels
may have lowered altered energy flux to zooplankton. Finally, the third mechanism
addresses effects of zebra mussels on availability of zoobenthos production to fish.
Dahl et al. (1995) believe that increased zoobenthos production has offset decreases
in plankton production, and Dermott (1993) observes that shifts in zoobenthos
species composition seem to be towards more edible food items for fish (e.g., from
Unionids and Sphaerids to amphipods).

Representing these mechanisms and their alternative interpretations in LEEM
requires overcoming the inherent limitations of LEEM and the lack of more precise
models. LEEM is an annual time step model with low resolution of lower trophic
level structure. The equations for lower trophic level energy flow, however, have
parameters that reasonably aggregate fine-scale spatial and temporal mechanisms
on an annual, whole lake basis (see the Appendix). In terms of LEEM parameters,
therefore, we use the following parameter adjustments to model each of the mecha-
nisms:

1. Interaction of phosphorus recycling and phytoplankton productivity. This effect could
be reflected in changes in the relationship of primary production to phospho-
rus loading, Eq. 14. To accommodate Griffiths’ (1999) hypothesis, in particu-
lar, decreasing Eq. 14’s parameters g0 and ZMr relative to LEEM’s present
assumptions would reflect a reduction in phosphorus recycling. In contrast,
the Culver et al. (2000) argument would require increasing both parameters.

2. Competition between zebra mussels and zooplankton for edible algae. The combination
of adjustments in two parameters—lowering Zkp in Eq. 16 and increasing AZP
in Eq. 18—would correspond to the mechanism proposed by Culver et al.
(2000). This would lower the overall effect of zebra mussels on zooplankton
productivity, i.e., reduced competition. The alternative interpretation of Heath
et al. (2000) could be represented by a decrease in AZP (Eq. 18), which
decreases the energy flow from pelagic algae to zooplankton.

3. Higher zoobenthos production. Increasing the benthic production parameter AZB
in Eq. 20, which in turn increases non-mussel zoobenthos productivity ZooBPt,
could capture this hypothesis.

Subjective Probability Elicitation: P(δnm)

Each of the above hypotheses describes a distinct set of nutrient and energy
interactions, which we capture here by different values of five of LEEM’s param-
eters. Thus, in Figure 1, there would be a series of five chance nodes for ∆, one for
each of its five components (δ1=ZMr, δ2=Zkp, δ3=AZP, δ4=AZB, and δ5=g0). To ease the
managers’ task of specifying probabilities, we allow each parameter to take on just
two or three of the following levels: m= high (H), medium (M, base case), or low (L).
Given the qualitative characteristics of the hypotheses, we selected numerical values
associated with H, M, and L to provide a range of parameter values large enough to
be informative without causing unrealistic model behavior. For example, in the case
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of the relationship between primary production and phosphorus loads, the param-
eter ZMr was varied +/-50% from the base case for H and L, respectively. Table 2
shows the assumed LEEM values. Note that some parameters lack a L or H value
because no hypothesis suggests lower or higher values, respectively.

The task assigned to each of the fisheries biologists in the workshops was to review
and, where appropriate, rephrase the hypotheses, and then assign a prior probabil-
ity P(δnm) for each parameter δn and each level m that reflects their understanding
of the hypotheses and their judgments about the hypotheses’ relative likelihood. As
explained below, the biologists also chose likelihood probabilities for research
outcomes, which we use together with the prior probabilities and Bayes’ law to
estimate the value of that research. Table 3 shows the average (across the six
participants) probability chosen by the managers for each δnm, along with the ranges
of their responses. The wide ranges reflect considerable disagreement concerning
the credibility of the hypotheses. The implications of this disagreement are ex-
plored in our sensitivity analyses.

A limitation of this study is that we relied on fisheries scientists for these probabili-
ties, as opposed to scientists who study lower trophic level ecology. Nevertheless, we
believe that their level of expertise was sufficient to illustrate the value of the
Bayesian approach. However, we recommend that actual studies of this type ensure
that a more diverse group of experts be relied upon, with at least some members
having directly relevant research experience.

Research Projects and Outcome Likelihoods: E and P(Zhk|δnm)

The first decision node in Figure 1 represents possible research projects,
E ={e0, e1,…, eH}. If a project is undertaken, the prior probabilities P(δnm) are updated
by Bayes’ rule (Eq. 1), yielding posterior probabilities, P(δnm | Zhk ). Likelihoods P(Zhk

| δnm) are required by Bayes Law (Eq. 1) to describe the information about the
parameters provided by the potential research projects. In this part of the workshop,
the following questions were addressed by the managers:

1. What possible research projects might help discriminate among the hypoth-
eses?

2. What is the likelihood P(Zhk | δnm ) of each research outcome, given the true
state δnm?

3. What is the cost and time required for each possible project?

Table 2. LEEM parameter values.
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In the workshop, the participants defined 16 research projects. Although in
general several projects could be undertaken at once, for the purpose of this
illustrative analysis we consider only individual projects. Some of these defined
projects were dominated by other projects (i.e., higher costs yet lower reliability of
outcomes), while others were very narrow in scope. Because of time limitations, we
elicited probabilities from the participants for four of the projects, representing a
cross-section of the original 16. Table 4 lists these four, their associated cost and time
(averaged across the six participants), and a qualitative indication of the degree to
which the participants thought that the projects might provide useful information
on each parameter. A darker shading indicates that more information is provided.
For instance, primary production monitoring (project C) has implications for zebra
mussel recycling (first parameter) and primary production (fifth parameter). On
the other hand, even though paleolimnological research (project D) would also
provide information on those parameters, that project’s results are judged likely to
be less definitive. Yet C’s costs in time and money exceeds those D, making the latter
potentially attractive.

In the second workshop, the fisheries managers provided values of P(Zhk | δnm) for
the four projects. The research outcomes Zhk are described in very general terms:
would the research outcome support a low, medium, or high value of the param-
eters in question? Table 5 shows an example of the assessed likelihoods: the likeli-
hoods for the parameter ZMr for project C. The values in the table show averages
across participants plus their ranges.

This table shows that, on average, the participants felt that project C was more
likely than not to yield results consistent with the actual parameter values; this is
indicated by values on the diagonal exceeding 0.5. However, some participants
anticipated that this particular project would convey little or no information
(e.g., nearly equal probabilities in a row).

Selection of Objectives, Criteria, and Weights: X and wi

In the first of the two workshops, the fisheries managers were asked to define
general objectives along with specific numerical criteria that should be used to
evaluate fishery management options. Based on their responses, we constructed a

Table 3. Average (across the six participants) prior probabilities P(δ nm ) chosen
by the managers for each δnm, along with the ranges of their responses.
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Table 4. Information provided, cost and time of example research projects.
(For each parameter, a darker shading indicates that more information
is provided. For example, Project C provides more information for δ5

than Project D does.)

Table 5. Likelihoods P(Zhk | δnm) for parameter ZMr for project C (Primary
Productivity Monitoring) (Mean and ranges across participants (lowest
– highest)).

200642.pgs 6/18/03, 10:48 AM1039



1040 Hum. Ecol. Risk Assess. Vol. 9, No. 4, 2003

Kim et al.

hierarchy of objectives and related criteria that capture the range of responses
obtained (Figure 2). The overall objective is to maximize ecosystem health and
human well-being. That overall goal is subdivided into three categories of objectives:
social, ecological, and economic, which are then further divided as explained below.
The criteria xi are LEEM variables that indicate the degree to which the various
objectives are furthered.

The social criteria reflect the importance of recreational fishing in Lake Erie;
indices of both biomass (biomass of walleye x1) and total walleye sport harvest (x2)
are used. However, consumption of contaminated fish is also a concern. Since
consumption advisories for smallmouth bass are more stringent (1 fish/month)
than for walleye (1 fish/week) (Ohio Dept. of Health 1999), we address this concern
using average PCB concentration in small mouth bass (x3).

For the ecological objective, “productivity” refers to total annual productivity;
“structure” concerns horizontal trophic relationships having implications for stabil-
ity of the fish community; “function” refers to vertical trophic relationships relevant
to vertical energy flow in the fish community; and “native species” concerns the
presence of native types of fish. We adopted the following LEEM variables as
quantitative criteria for these objectives: total fish productivity (x4), the ratio of
walleye to percid biomass (x5), piscivore to planktivore productivity ratio (x6), and
native species to total biomass (x7), respectively.

Finally, for the economic objective, we considered the harvests of three commer-
cially important species: walleye (x8), yellow perch (x9), and smelt (x10).

Turning to the utility function assessment, the first task was to define the range
of possible criteria values and a set of single criterion utility functions for each

Figure 2. Objectives and criteria xi chosen by Lake Erie fisheries managers.
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person. For simplicity, we assumed that each utility function was linear between the
worst (ui=0) and best (ui=1) values defined by each participant; if a value of xi falls
outside those ranges, then it was assumed to have a utility of 0 or 1, as appropriate.
As for the weights wi , Table 6 presents the maximum, minimum, and average values
across participants for each of the ten criteria. Participants chose weights by describ-
ing how much of one attribute they would trade-off for a given improvement in
another (Anderson et al. 2002; Hobbs and Meier 2000). All the participants assigned
higher weight to the recreation criteria and less weight to economic criteria. Be-
cause different weights can yield different decisions (ibid.; Anderson et al. 2001), we
examine below the sensitivity of optimal strategies, ECIU, EVPI, and EVII to these
results.

An Example of ECIU and Value of Information Calculations

In this section, we provide an example to show how each decision tree compo-
nent (i.e., the decision alternatives, their performance on the attributes, probability
distributions, and effect of research on uncertainties) can affect the optimal deci-
sion, ECIU, and value of information. We base the example on the average weights
and probabilities provided by the participants. In Table 7, we show four sets of
attribute values, one for each combination of two fishery alternatives (out of the 27
possible combinations) and two sets of lower trophic level parameter values (from
the 108 combinations). The two alternatives are as, = HLH and as = HMH, where the
three letters refer to the smelt, walleye, and yellow perch target fishing mortality
targets, respectively. For the uncertain parameters, we consider { δ1Medium, δ2Medium,
δ3Medium, δ4Medium, δ5Medium} and { δ1Low, δ2Medium, δ3Medium, δ4Medium, δ5Medium}. In addition to the
parameter values, we also show the values of the single attribute utility function
values ui(xi) for each alternative, and (in the last row) the weighted sum of those
values using the average weights.

The table indicates that judgments about the relative likelihood of different
“states of nature” (parameter sets) could affect the decision. In particular, given the
second set of parameters, decision HLH has a higher utility than HMH
(i.e., U(X(a=HLH)) = 0.5429, while U(X(a=HMH)) = 0.5419). However, under the
first set of parameter values, the ranking of the options is reversed.

Likewise, the examination of the attribute values shows that value judgments
(weights) can also affect the solution. Consider, for instance, the first and third
column of attribute values, which compare HLH and HMH under the medium
parameter values. HLH is better in the two walleye attributes (x1 and x2), while HMH
is as good or better in all the other attributes. This indicates that sufficiently high
values of w1 and w2 would result in HLH having a higher total utility, while lesser

Table 6. Summary of weights for the 10 criteria.
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values for those weights would instead favor HMH. The last line of Table 7 indicates
that the average weights would select HLH under those parameter values.

In Figure 3, on the top left side, we show an abbreviated decision tree that ignores
uncertainty (i.e., assign a probability of 1 for M for every parameter). As we just
stated, the best choice in that case is HLH. On the top right side, which instead
considers the full prior distributions of parameters, HMH becomes the best choice.
This shows that considering uncertainty matters.

ECIU is the expected amount by which HMH (the best choice under uncertainty)
is better than HLH (the naïve choice). HMH has an expected utility that is 0.022
higher than HLH (= 0.5666 – 0.5447, top right side of Figure 3), but the magnitude
of this number by itself is difficult to interpret. Therefore, we convert the difference

Table 7. An example of effects of decision and hypotheses on the attributes
and utility under mean weights.
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in utility into an interpretable change in a criterion using Eq. 8. We use walleye sport
harvest (x2) to interpret the difference because it is, on average, the most important
attribute (mean w2 = 0.19). The increment of 0.022 in utility is equivalent to 984
tons/yr of walleye sport harvest. To put this value in perspective, the mean walleye
sport harvest over 1990 to 1998 was about 2000 tons/yr (2,300,000 fish (LEWTG
1999) times a mean size for 1998 of 0.88 kg (ODW 1999)). This indicates that the
cost of ignoring uncertainty in this case is on the order of 50% of the walleye sport
harvest.

In the bottom of Figure 3, we illustrate the calculation of the value of information
for research project B (i.e., Lakewide estimates of zooplankton and benthic produc-
tion). This project can provide information concerning four of the five uncertain
parameters: zebra mussel recycling (ZMr), zebra mussel production (Zkp), zooplank-
ton production efficiency (AZP), and zoobenthos production efficiency (AZB). The

Figure 3. Decision tree for calculating ECIU and value of research project B for lower
trophic level. uncertainties under mean group weights and probabilities.
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figure reveals that the optimal decision depends on the research project’s outcome.
One possible outcome is {ZZMr

=High, ZZkp
=Medium, ZAZP =High, ZAZB =High}; that is,

that the research indicates that three parameters {ZMr, AZP, AZB} are likely to be
relatively high while the other parameter is likely to remain medium. These values
are consistent with the enhanced productivity hypotheses of Culver et al. (2000) for
parameters ZMr and AZP and Dermott (1993) for AZB. (Zkp is assumed to remain
medium because none of the hypotheses suggest a higher value for it.) This out-
come is shown as ZBHigh in the figure. In that case, the optimal choice is aopt|ZBhigh

 =
HLH, which differs from the optimal strategy if there is no research project (i.e., aopt

= HMH). On the other hand, if the project’s outcome is more consistent with low
values of these parameters, then HMH is instead optimal.

Since the optimal decision depends on the research outcome, that project can
have a positive value of information EVII. Figure 3 reveals that the expected utility
(over all possible project outcomes) if project B is undertaken is 0.0004 higher than
if no research project (= 0.5670 – 0.5666). Although that increment of 0.0004
appears small, it is equivalent to 19 tons/yr of walleye sport harvest. The users would
then need to compare this research benefit with the project’s cost in order to
determine whether the project is worth undertaking.

The project has value because it reduces the uncertainty in the parameters and,
thus, the performance of the various alternatives. For instance, the high, medium,
and low values of parameter ZMr (0.000015, 0.00001, and 0.000005, respectively),

Figure 4. Optimal decisions under varying w8 and P(AZP = H),given mean values across
participants for other parameters. (H= High, M= Medium, L= Low. Decisions
are for smelt, yellow perch, and walleye, respectively.).
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have mean (across participant) prior probabilities of 0.36, 0.38, and 0.26, respec-
tively. Given the mean outcome likelihood probabilities, the posterior probabilities
of these same outcomes are 0.61, 0.21, and 0.18, respectively, if project B’s outcome
is ZBHigh. Thus, parameter uncertainty has decreased. Consequently, uncertainty in
the performance of the alternatives will also decrease. For instance, the uncertainty
in walleye sport harvest x2 (as represented by its standard deviation) if HLH is
implemented is 1.26E+6 [kg/yr] under the prior probability distribution, but shrinks
to 1.09E+6 [kg/yr] under the posterior distribution, given project outcome ZBHigh.
As a result of the decreased uncertainty in attribute values, the posterior variance of
the overall utility of decision HLH, given an outcome of ZBHigh for project B, is
Var(U(X(HLH, ∆))| ZBHigh)= 0.0063. This is one third smaller than the prior vari-
ance Var(U(X(HLH, ∆))) = 0.0092. It indicates that the information yielded by
research allows a decision to be made with more confidence.

RESULTS

In the first subsection below, we discuss optimal fishery management strategies
developed without information provided by research, and their sensitivity to weight-
ing and probability judgments. The effect of disregarding uncertainty upon the
strategies is also described. Other subsections review ECIU and EVPI results, along
with EVII for the four research projects.

Single Stage Optimal Strategies

In this subsection, we provide an overview of how the fishery management
strategies depend upon the manager’s value judgments (single criteria value func-
tions and weights) and his or her probability judgments about the lower trophic
level effects of zebra mussels. Table 8 shows optimal fishing strategies for each of 64
combinations of value judgments (each of the six manager’s value judgments, plus
the mean weights and equal weights) and prior probability judgments (the six
individuals’ probability sets, along with the mean probabilities and equal probabili-
ties). Considering all these combinations allows us to compare the relative effect of
value judgments versus probability judgments upon the results. For each combina-
tion of value and probability judgments, the table displays two optimal strategies:
anaïve on top (the optimal strategy under certainty, in which M, the LEEM base case
value of each parameter, is assumed to occur with probability 1) and aopt on bottom
(optimized instead assuming the stated prior probabilities). When the two strategies
are the same, just one entry is shown. As an example, under participant 4’s value
judgments and probabilities, high (H) target fishing mortalities for smelt and
walleye along with a medium (M) target for yellow perch are optimal when the
participant considers the uncertainties. In contrast, the naïve strategy (assuming
certainty) is instead the restrictive policy of low (L) targets for all fisheries.

The table shows that, of the 64 combinations, anaïve differs from aopt in 22 cases. As
a result, we conclude that the expected cost of ignoring uncertainty will be zero for
many but not all possible weights and probability judgments. At one extreme, under
equal weights or participant 1’s value judgments, considering uncertainty makes no
difference for any of the sets of probabilities. On the other hand, for average weights
and participants 3 and 6’s value judgments, the naïve and sophisticated strategies
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differ for half or more of the sets of probabilities. Hence, ECIU will be zero for equal
weights or person 1’s values, but potentially large for other sets of value judgments.

Those results indicate that, overall, value judgments affect strategies more than
prior probabilities. This hypothesis could be analyzed, e.g., by multivariate ANOVA;
however, because our sample of managers is small and nonrandom, we will only
discuss qualitative patterns apparent in the table. For example, although there are
two weight sets for which probabilities do not matter (all entries are identical in a
column), there are no sets of probabilities for which the results are identical for all
weight sets. As another indication of the importance of value judgments, different
columns diverge in important ways (as an extreme, compare the results for person
4’s value judgments with any other person’s), but there are no such large differences
among the rows. Additional sensitivity analyses (not shown) indicate that the value
judgments involved in choosing the wi are much more important than the value
judgments made in choosing the upper and lower bounds of the single criteria
utility functions (i.e., the values of the xi that result in ui = 0 and 1, respectively).

Although value judgments have the greatest effect on strategy choices, probabil-
ity judgments can still matter in important ways. We demonstrate this through an
illustrative sensitivity analysis. With the average probability and value judgments, the

Table 8. Optimal target fishing mortalities when uncertainties are ignored or
included.
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optimal decision is HMH (Table 8). Changes in either weights and probabilities can
alter this decision. For example, Figure 4 shows how the optimal decision varies if
just two judgments (P(AZP =H) and w8) are altered, changing other probabilities
and weights proportionately. The elicited average w8 and P (AZP= H) are 0.07 and
0.42, respectively. With a fixed P(AZP=H)=0.42, the optimal decision stays at HMH
for w8 in the range [0,0.13]. However, if w8 exceeds 0.13, the optimal decision would
be HHM. Meanwhile, the optimal decision also depends on the selected probability
P(AZP=H) for most values of w8.

ECIU Results

ECIU, the expected cost of disregarding uncertainty when it actually exists, can
only be nonzero if anaïve differs from aopt (Table 8). Therefore, if aopt equals anaïve for
a given combination of value and probability judgments in Table 8, the ECIU will
be zero. For example, under participant 1’s value judgments and probabilities,
Table 8 shows that aopt and anaïve are the same decision, so ECIU = 0. Meanwhile,
under participant 4’s value judgments and probabilities, the optimal strategy is high
(H) target fishing mortalities for smelt and walleye along with a medium (M) target
for yellow perch when the participant considers uncertainty. In contrast, the naïve
strategy yields a strategy of low (L) targets for all fisheries; therefore, ECIU can be
positive.

In Table 9, we calculate ECIU for each of the combinations of value and prob-
ability judgments considered in Table 8. As above, ECIU is expressed as the improve-
ment in annual walleye sport harvest needed to equate the expected utility of anaïve

and aopt (i.e., Eq. 8). For the 22 cases in which those two strategies differ, the value
of ECIU ranges from trivial (a handful of tons) to values well in excess of the annual
average sport harvest in 1990-1998 (2000 tons). About half of those values are the
same order of magnitude as that harvest. However, for one person (participant 4)
this was because the weight for x2 was small (which inflates the change in x2 necessary
to equate the left and right sides of Eq. 8), not because the utility loss was high.
However, some of the high ECIUs occur even though x2 receives a significant share
of the weight (which we define as w2 > 1/10). An instance is the average weight
column of Table 9. Thus, although we conclude that disregarding lower trophic
level uncertainties does not significantly affect the decision in most cases, in some
situations the expected penalty is important.

The Maximum Potential Value of Research: EVPI Results

In the previous subsection, we consider only a one-stage decision problem: which
fishing policies are optimal, given the present state of information? In contrast, if
research would reduce uncertainty, and its benefits (in terms of better manage-
ment) would exceed its cost, we should consider undertaking that research.

As explained earlier, EVPI is the maximum possible benefit that can be obtained
from research; thus, if the expense of research (in $ and time) exceeds EVPI, then
the research cannot be justified by just its benefits to management. In Table 10, we
summarize EVPI calculated separately for each of two subsets of the parameters in ∆,
and for all five parameters together; these calculations are made for each of the 64
combinations of value and probability judgments that were also considered in
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Tables 8 and 9. These EVPIs are expressed as equivalent changes in annual walleye
sport harvest x2 (Eq. 13). The first of the three EVPIs for each combination is for just
the uncertainties that Table 4 indicates are addressed by projects A and B: ZMr

(mussel phosphorus recycling), Zkp (zebra mussel production), AZP (zooplankton
production), and AZB (i.e., zoobenthos production). Thus, that EVPI is an upper
bound for the management benefits of those projects. The second of the EVPIs is
for the two parameters that projects C and D are concerned with: ZMr and g0 (the
relation between phosphorus loading and primary productivity). The last value is
the EVPI for eliminating all five uncertainties (ZMr, Zkp, AZP, AZB, g0).

Table 10 indicates that the EVPIs implied by the managers’ judgments are often
significant relative to the average annual walleye harvest of 2000 tons/yr in the
1990s. Projects A and B clearly have higher potential benefits than projects C and D,
as the uncertainties addressed by the former projects apparently have more influ-
ence on decisions. Of course, the actual expected benefits of these projects (EVII)
could be much smaller, depending on the reliability of their results (as captured in
the likelihoods P(Zhk | δnm)). Unsurprisingly, the potential value of A and B is close
to the EVPI for all parameters because A and B address four of the five parameters.

Cursory comparison of Tables 9 and 10 show positive EVPIs for several cases in
which ECIU is zero. This is consistent with Table 1, which shows that there is no
necessary theoretical relationship between the values of ECIU and EVPI; either can
be positive when the other is zero.

To compare the potential value of information for each project with its cost as
listed in Table 4, we need to translate the $ cost into an equivalent value of x2. Based
on a review of non-market valuation of Great Lakes fishes (Talhelm 1988) and the
application of these results to lake trout fisheries (Koonce et al. 1993), we used a
value of $12 per fish caught as a basis for comparison. As the research cost is a one-
time expense, while the ecological benefits of management are ongoing, an interest
rate assumption is needed; here, we use 10%/yr and a 10 year time horizon for the

Table 9. ECIU in terms of sport walleye harvest x2 (ton/ year).
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Table 10. EVPI in terms of walleye sport harvest x2 (ton/year).

ecological benefits. As a result, the break-even points at which the EVPI or EVII of
a project in terms of x2 equals its annualized cost are 2.3, 11, 9.7, and 1.7 tons/yr of
walleye for research projects A, B, C, and D, respectively. Lower interest rates, longer
time horizons, or higher per fish values would decrease these thresholds. Table 10
shows that in most cases, the potential management benefits of the projects (EVPI)
are well in excess of those break-even amounts of x2. Therefore, all four research
projects are potentially well worth their cost. Exceptions occur under two of the
eight sets of value judgments: equal weights and person 1. There, EVPI is zero; their
decisions would not alter if perfect information was available, no matter what set of
prior probabilities is used.
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Like the optimal fishery decisions discussed earlier, EVPI is also sensitive to value
and probability judgments. Figure 5 shows a sensitivity analysis with respect to the
same two judgments (w8 and prior P(AZP=H)) we considered in the earlier sensitiv-
ity analysis (Figure 4). The EVPI in this case is calculated for all five parameters
simultaneously, using the average weights and prior probabilities. By varying w8 and
P(AZP=H), Figure 5 shows that the EVPI can be three times as large as in the base
case (196 tons, Table 10), or zero depending on the values of those two judgments.
The figure reveals that EVPI is influenced by both, but that weight is the more
important of the two, just as in the case of the strategies (Figure 4).

EVII Results

Information from research generally reduces uncertainty without eliminating it.
Thus the actual value of information from research (EVII) is usually less than EVPI
(and often considerably so). In Table 11, we present EVII for each of the four
research projects for each combination of value and probability judgments consid-
ered in the earlier tables. (An exception is that we have eliminated the equal
probabilities row as uninteresting. This is because an assumption of equal likeli-
hoods P(Zhk|δnm) for each research outcome Zhk would necessarily imply a zero EVII.)
EVII is quantified in terms of walleye sport harvest, as in Eq. 12. In Table 11, the first,
second, third, and fourth values in each entry indicate the EVII of projects A, B, C, D,
respectively.

As anticipated, the values of imperfect information in Table 11 are generally less
than the EVPIs of Table 10, sometimes equaling zero even though EVPI is positive.
Larger discrepancies arise when the workshop participant anticipates that the re-
search results will be unreliable (i.e., a large likelihood that the research results will
be inconsistent with the true state of nature/parameter value; see Table 5, above).

Figure 5. Sensitivity analysis for EVPI of eliminating uncertainty in all five parameters.
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Table 11. EVII in terms of sport walleye harvest (ton/yr).
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Using the $/walleye and interest rate assumptions of the previous subsection, we
nevertheless find that for 31 of the 56 combinations of value and probability
judgments, the research projects’ benefits justify their costs. A, B, and D are each the
highest benefit project for at least one combination apiece, while project C is never
most valuable. A and B tend to have higher benefits than C and D because the
former projects provide information on four of the five uncertain parameters in ∆,
whereas the latter projects shed light on just two of the parameters.

Because we use walleye sport harvest to interpret EVII, we now illustrate a
sensitivity analysis of the results with respect to the $/walleye value. Based on the
average value and probability judgments and $12/walleye, the best research project
is B whose EVII is 19 tons of walleye harvest per year. That project’s net benefit (i.e.,
the EVII minus the annual project cost from Table 4, assuming 10% interest and a
10-year benefit period) is positive if the value per walleye exceeds $7.

Criteria weights too will affect a research project’s net benefits. Figure 6 shows a
sensitivity analysis of the net benefits of project B with respect to w8 and prior
P(AZP=H). The value in the figure represents net expected benefits from project B
calculated by converting EVII to dollars using our $/walleye value and 10% interest/
10-year benefits period assumptions, and then subtracting the project cost of $932,000.
(Negative net benefit values are not shown.) With mean judgments (i.e., w8 = 0.07,
P(AZP=H) =0.42, and mean likelihoods), the project’s net benefit is $107,000/yr.
The diagram also shows that net benefits vary with the weight and prior probability.

CONCLUSION

Uncertainties about the impact of zebra mussels on energy and phosphorus flows
in the lower trophic level of Lake Erie are large and potentially relevant to the

Figure 6. Sensitivity analysis of net value of Project B (EVII – cost) given mean judgments.
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management of the lake’s fisheries. In our analyses, we have shown that Bayesian
and multicriteria decision analytic methods provide a practical approach for quan-
tifying the implications of uncertainties for decisions and identifying the value of
research for reducing them, while recognizing the multiple goals that concern
managers and stakeholders. Although our representation of uncertainties is both
limited and simplified, and we only had a limited number and range of experts in
the workshop (six fishery scientists), two implications of our application of Bayesian
methods stand out. First, our analysis shows that current uncertainties about the
lower trophic level might hinder Lake Erie fisheries management. This is indicated
by the results that show that the worth of removing those uncertainties (i.e., EVPI)
might be as much as thirteen times greater than the value of the annual walleye
sports harvest. Second, the value to management of the imperfect information that
research could provide (EVII) can be several orders of magnitude greater than the
expense of research.

Our results support several additional insights. First, considering lower trophic
level uncertainties can change decisions. For three out of the six participants in our
workshop, the optimal targets for fishing mortality would change if they were to
factor in those uncertainties. The expected improvement in the performance of
fishery management resulting from recognizing uncertainty (ECIU) is as much as
ten times the value of the historical annual walleye sport harvest. Averaged across
the participants in our study, the performance difference between ignoring and
including uncertainties in decisions is equivalent to approximately half of the
historical walleye sport harvest. We also find that optimal fishery decisions and value
of information are sensitive to expert judgments—both to probabilities represent-
ing the confidence managers have in alternative hypotheses about Lake Erie’s lower
trophic level and (especially) to the relative priority the managers assign to various
ecological health and social objectives.

If Bayesian and multicriteria decision analysis methods are to be useful for
ecological management, users must have confidence in the value and probability
elicitation procedures required by those methods. Therefore, after the workshops,
we asked the participating managers how easy, meaningful, and useful they found
each of the workshop exercises. In general, the participants felt that value judg-
ments, including definition of objectives and weight assessment, were easier and
more meaningful than probabilistic judgments, including prior probabilities and
likelihoods of research outcomes. This is reassuring, as the analysis results are most
sensitive to weights. That the probability tasks were more difficult may be attribut-
able to the fact that most of these managers lacked formal training and experience
in Bayesian methods. The managers also stated that more time was desirable to
discuss and quantify values, hypotheses, and uncertainties than was available during
the two 1.5-day workshops. Therefore, we conclude that if value and probability
judgments by experts and/or stakeholders are to be part of a quantified decision
analysis of ecological research alternatives, adequate time (one week or more)
should be allowed for the judgment elicitations tasks to ensure that the participants
understand and have confidence in the methods and their results (Hobbs and
Meier 2000).
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APPENDIX: LAKE ERIE ECOLOGIC MODEL LOWER TROPHIC LEVEL
EQUATIONS

First, primary production (PPt) [kg/yr] in year t is assumed to be a function of
phosphorus loading and phosphorus internal recycling by zebra mussels:

 PPt=g0 (Plt + ZMr NZMt) g1 ,  (14)

where Plt is phosphorus loading [kg/yr], ZMr is a phosphorus recycling coefficient
[yr-1] for zebra mussel biomass NZMt [kg], and g0 [ ] and g1 [ ] are primary production
coefficients. Mussel biomass in t in turn depends on biomass in t-1 and mussel
production ZmProdt [kg/yr]:

NZMt = NZMt-1 (1- Zkz NZMt-1 – Zka ) + ZmProdt ,  (15)

where Zkz [kg-1] and Zka [ ] are constants. ZmProdt [kg/yr] depends on PPt and
mussel biomass:

ZmProdt = Zkp [PPt / (ZK + PPt) ] NZMt ,  (16)

with Zkp [yr-1] and ZK [kg/yr] being constants.
Meanwhile, mussel biomass affects how much of the primary production consists

of edible algae (PPEt [kg/yr]):

PPEt = [1– NZMt
2 /( NZMt

2 + Φ1
2 )] (PP t – ZmProdt) ,  (17)

where PPEt [kg/yr] is edible algae biomass and Φ1 [kg] is a constant. Zooplankton
productivity [kg/yr] is a function of edible algae abundance:

ZooPPt = AZP × PPEt ,  (18)

where AZP [ ] is a constant. Since zebra mussels affect PPEt , this implies an
assumption that zooplankton compete with zebra mussels for food. Primary produc-
tion available to the benthic zone (BenFoodt) [kg/yr] is a function of total primary
less the production filtered by mussels:

BenFoodt = PPt – Φ2 ZmProdt ,  (19)

200642.pgs 6/18/03, 10:49 AM1054



Hum. Ecol. Risk Assess. Vol. 9, No. 4, 2003 1055

Multicriteria Bayesian Analysis of Lake Management

where Φ2 [ ] is the Zoobenthos production coefficient. In turn, zoobenthos produc-
tion (ZooBPt) [kg/yr] is a function of benthic food availability:

ZooBPt = AZB BenFoodt ,  (20)

with AZB [ ] being a constant.
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